PowerStore Technischer

Deep Dive

September 23, 2020

D&LLTechnologies

Hardware Overview

Terminology (Hardware) - PowerStore

PowerStore Term	Definition	Previous Terms
Node	Component within the base enclosure that contains processors and memory. Each appliance consists of 2 nodes.	Storage Processor (SP), Controller
Base Enclosure	Used to reference the enclosure containing both Nodes (Node A and Node B) and 25x NVMe drive slots Disk Processor Enclosure (DPE), Array	
Expansion Enclosure	Enclosures that can be attached to a base enclosure to provide additional storage in the form of SAS drives	Disk Array Enclosure (DAE), JBOD
Appliance	Term used for solution containing a base enclosure and any attached expansion enclosures. The size of an appliance could be just the base enclosure or the base enclosure plus expansion enclosures.	N/A
Cluster	Multiple appliances in a single grouping. Clusters can consist of one appliance or more. Clusters are expandable by adding more appliances (up to 4).	N/A
Embedded Module	Module embedded to each node providing mgmt, host front-end connectivity, SAS expansion ports, and selectable 4-port card	N/A
4-Port Card	Card for each node that provides 4 ports for mgmt. and front-end ports. Selectable in 25GbE and 10GbE Base-T options.	N/A

Overview Models

PowerStore™

- Overall family brand that encompasses all models is called "PowerStore"
- "PowerStore T models" refers to SAN/NAS only deployment mode of PowerStore
- "PowerStore X models" refers to SAN and built-in ESX hypervisor deployment mode of PowerStore
- From marketing perspective, it is acceptable to omit "T" and "X" when referring to a particular system configuration
 - i.e. "PowerStore 5000 models have these system limits..."

PowerStore Models

	PowerStore 1000	PowerStore 3000	PowerStore 5000	PowerStore 7000	PowerStore 9000
CPU per Appliance	4x 8C @ 1.8G Intel Xeon	4x 12C @ 2.1G Intel Xeon	4x 16C @ 2.1G Intel Xeon	4x 20C @ 2.4G Intel Xeon	4x 28C @ 2.1G Intel Xeon
Memory per Appliance	384GB	768GB	1152GB	1536GB	2560GB
NVRAM drives per Appliance	2		4		
Max Storage Drives per Appliance	96		96		
Supported Drives	NVMe SCM, NVMe SSD, SAS SSD				
Embedded Ports	4x 25/10/1 GbE Optical or 4x 10/1 GbE BaseT				
Support I/O Modules (2 slots per node)	4x 32/16/8 Gb FC, 4x 25/10/1 GbE Optical (PowerStore T only), 4x 10/1 GbE BaseT (PowerStore T only)				
Supported Expansion Shelves	2.5" 25-Drive SAS SSD				

D&LLTechnologies

Base Enclosure (Front)

- 25x Drive Slots supports:
 - -NVMe SSD or
 - NVMe SCM
- Last 4x slots support:
 - -NVMe NVRAM used for write caching
 - Support either 2 or 4 NVRAM drives depending on model
 - Four slots will always be reserved for the NVRAM drives even when the model uses 2 NVRAM drives
- 2U in height (rack units), 31.2" depth, ~92 lbs fully loaded
 - Two personnel required to install the system

2x or 4x NVMe NVRAM drives

Chassis

Embedded Module

Base Enclosure (Rear View)

- 2 Nodes in inverted arrangement
- Each Node has Embedded Module with:
 - 1x 4-Port Card Slot Mezz 0
 - Embedded 2x1GbE Port (Mgmt/Service)
 - Embedded SAS Expansion Ports (x2)
- Every appliance must contain a 4-Port Mezz 0
 - The 4-Port Card is used for connections such as cluster interconnect and management of the appliance
 - Customers will have 2 types of 4-Port Mezz cards to select from: Optical or Copper
- Each node has 2x I/O Module slots for configuring optional additional frontend ports
- Each node has a power supply unit (PSU) which can power both nodes if needed

Summary

- All 25 drive slots support NVMe drives, SAS SSD drives are not supported in any slot on base enclosure
- SAS SSD drives are only supported in attached expansion enclosures

Drive Type	Location	Purpose
NVMe NVRAM Slots 21-24 in base enclosure		Cache
NVMe SCM	Slots 0-20 in base enclosure	User Data/Meta Data
NVMe SSD	Slots 0-20 in base enclosure	User Data/Meta Data
SAS SSD	Slots 0-24 in expansion enclosure	User Data/Meta Data

NVMe SCM – System Configuration

NVMe SSD – System configuration (no expansion enclosures)

NVMe SSD – System configuration (With expansion enclosure)

Storage Type	Usage / Purpose	GB	2.5" Base Enclosure (25 slot)	2.5" Expansion Enclosure (25 slot)
	User Data/Metadata	1,920		\checkmark
SAS SSD	User Data/Metadata	3,840		\checkmark
	User Data/Metadata	7,680		\checkmark
	User Data/Metadata	1,920	✓	
NVMe SSD	User Data/Metadata	3,840	✓	
	User Data/Metadata	7,680	✓	
	User Data/Metadata	15,360	✓	
	User Data/Metadata	375	✓	
	User Data/Metadata	750	\checkmark	
NVMe NVRAM	Cache	8	\checkmark	

- All drive offerings are encrypted (SEDs)
- All drive offerings are FIPS certified except for NVMe NVRAM drives

PowerStore T Model Overview

PowerStore T Model

- PowerStoreOS installed directly on purpose built hardware
 - 2U2N
 - All NVMe Base Enclosure
 - Dual-socket Intel Xeon architecture
- Unified Storage array
 - SAN (FC/iSCSI)
 - NAS (NFS/SMB/FTP/SFTP)
 - vVol (FC/iSCSI)
- Active-Active architecture
 - Each node has access to the same storage
 - Active-optimized/Active-unoptimized front end connectivity

System Bond

- PowerStore T models contain a system bond by default
- Ports 0 & 1 of 4-Port Card are automatically bonded together in LACP mode
- This bond is essential to the networking configuration and cannot be removed
- System bond can provide high availability to cluster data and metadata traffic
- Link aggregation configuration on the switch side is optional
 - If switches are not configured to support LACP, Ports 0 & 1 will operate in Active/Passive mode

Deployment

Cabling

- Management Network
 - 1x Out of Band (OOB) Management switch
 - 2x OOB Management is supported for HA
 - Onboard 1GbE Ports
- Data Network
 - 2x Top of Rack (ToR) Ethernet Switches
 - Bonded 4-Port Card Ports 0 & 1
 - Layer 2 interconnect
- Diagram depicts minimal required cabling
 - Cluster will alert on not having dual redundant switches

PowerStore X Model Overview

PowerStore X Model

- ESXi runs directly on purpose built hardware
 - 2U2N
 - All NVMe Base Enclosure
 - Dual-socket Intel Xeon architecture
- PowerStoreOS runs in a virtual machine
 - Referred to as the Controller VM
- Capabilities:
 - SAN (FC/iSCSI)
 - vVol (FC/iSCSI)
 - Embedded Applications (Virtual Machines)
 - Currently, clustering of multiple X model appliances is not supported
- Active-Active architecture
 - Each node has access to the same storage
 - Active-optimized/Active-unoptimized front end connectivity

Overview ESXi

- VMware ESXi 6.7 U2 installed directly onto each node
- PowerStore X model appliance contains ESXi Cluster of two ESXi hosts
 - 1 ESXi host per node
- Requires existing vCenter and license for deployment
 - VMware vSphere Enterprise Plus license
 - Customer can purchase license or use existing
- VMware components are automatically configured
 - ESXi Cluster
 - vSphere HA
 - Distributed Virtual Switch
 - Etc.
- Customer Virtual Machines will leverage PowerStore storage and data services

Diagram

Secondary Node

Networking

Teaming

- PowerStore X implements various port teaming configurations
 - This provides high availability for network traffic
- PowerStore X requires 4-Port Card Ports 0 & 1 cabled at a minimum
 - ESXi networking is configured to support cabling all 4 ports on the 4-Port Card
- The use of these ports by specific networks will be detailed

Deployment

Cabling

- Data Network
 - 2x Top of Rack (ToR) Ethernet Switches
 - Bonded 4-Port Card Ports 0 & 1
 - Layer 2 interconnect
- Diagram depicts minimal required cabling
 - Cluster will alert on not having dual redundant switches

Example Config

Data Network

PowerStore Clustering

Clustering

Details

Currently, you can only cluster PowerStore T Model appliances

- PowerStore X Model appliances do not support clustering
- You can mix models within the series (e.g, PowerStore 1000 & PowerStore 3000)
- Maximum size of 4 appliances

APPLIANCES (2) PORTS						
ADD MODIFY MORE	ACTIONS -				2 Appliances	7 🛛 🖸 ୯
Name	Model	Service Tag	Alerts	IP Address	Total Capacity	Used Capacity
Appliance A	PowerStore 1000	DemoDST	8	10.245.60.1	3.0 MB	2.1 KB
Appliance B	PowerStore 2000	DemoDST		10.245.60.0	81.1 MB	22.5 KB

Resource Balancing

What is Resource Balancer?

- The ability of PowerStore to use analytics to balance storage resources (volumes)
 - Which node to assign a new volume to on an appliance
 - Which appliance to assign a new volume to in a multi-appliance cluster

What is Resource Balancer?

- Appliance assignments determined by:
 - Current storage space utilization
 - Storage trends and forecasts
 - System limits
 - Max volumes per appliance / volume group
 - Appliance status and health
 - Offline, failures, read-only (100% full)
 - Performance metrics are not considered
 - Resource Balancer does not proactively or automatically move existing volumes from one appliance to another

What is Resource Balancing?

- The ability to migrate storage resources between appliances in a cluster
 - Manual migration
 - Assisted migration
- Leverage capacity monitoring, forecasts, and alerts with suggested remediation options

Management

PowerStore Manager GUI Overview

What is PowerStore Manager?

- HTML5-based GUI for managing PowerStore clusters
- No Java required
- Supported with popular browsers: Chrome, Firefox, Internet Explorer, Edge, Safari
- Simple, modern, intuitive management and monitoring interface
- No client install required
- Connect by HTTPS
 - HTTP or HTTP redirect to HTTPS is not supported

PowerStore CLI

- Standalone Client
 - Translates CLI into REST API calls in the background
- CLI still used frequently for administration
 - Easy to use, OS commands can be used to filter
- Allows batch jobs without programming skills
- Available for Windows and Linux
 - RPM for SLES 12, RHEL 7.x, Oracle Linux 6.5, 7
 - Windows 7,8,10 / Server 2012, 2012R2, 2016
 - Requires administrative privileges for installation
- Objects almost identical to REST-API

- The REST API allows you to interact with PowerStore Management functionality, including:
 - System settings and monitoring
 - Host and remote system connections
 - Network settings
 - Storage management
 - Data protection
 - Support configuration
- Presents a single, consistent interface to manage
- SSL encryption allows secure connection from client to system

SwaggerUI

Swagger UI – https://<PowerStoreClusterIP>/swaggerui

D&LLEMC	Select a definition Storage Cluster API V1.0	~
Storage cluster API 10 [Base URL: 10.245.] /api/rest] https://10.245.11 .443/apl/rest/openapl_1_0.json Storage cluster REST API definition. End User License Agreement		
Schemes V V V V V V V V V V V V V V V V V V V		
Filter by tag		
alert Use these resource types to manage events and aler	erts in the system.	~

PowerStore Data Path

Dynamic RAID – RAID Resiliency Sets

- The Solution
 - Up to 25 Drives Per RRS
 - May Span Across Enclosures
 - 1 Spare Per 25 Drives
 - Spare space is distributed across all drives
- RAID Geometry
 - Set on Initialization
 - Automatic selection to maximize usable capacity

Initial Disk Count Requirement	Geometry	Maximum Drives
6	4+1	25
10	8+1	25

D&LLTechnologies

PowerStore Data Path

Dynamic RAID – Drive Types

Mixing Drive Types

D&LLTechnologies

PowerStore Data Path

Dedupe and Compression

- Main Concepts
 - 4:1 data reduction ratio guarantee
 - 4K granularity
 - HASH > Read & Compare
- Hardware Compression Offloaded
 - Lewisburg Chip
 - Quick-Assist Technology
- Checksum
 - Stored with Metadata

Data Path Write Path

I/O Flow

- 1. The system receives a Write operation
- 2. The write request is stored in DRAM Cache
- 3. The data is saved in NVRAM Write Cache.
- 4. The system acknowledges the host.

Data Path Write Path – "Late Bind"

After the Host has been acknowledged, the system still processes the Write request in the background

- 1. Write request is deduplicated and compressed
- 2. Continue to fill a 2MB stripe of compressed and deduplicated Write requests
- 3. Once the 2MB stripe is full, destage to drives

Data Path Read Path

I/O Flow

- 1. The system receives a Read operation
- 2. If the data is in the (DRAM) cache, fulfill the Read request
- 3. If the data is not in the (DRAM) cache, copy the data from the drives

PowerStore File Overview

PowerStore File enables clients to access data over file protocols:

- Server Message Block (SMB)
- Network File System (NFS)
- File Transfer Protocol (FTP)
- SSH File Transfer Protocol (SFTP)
- Currently File Replication is not available
- File is only available on PowerStore T model appliances
 - Currently PowerStore X model appliances do not support File

Block Optimized or Unified

- PowerStore T model appliances can be configured as Block Optimized or Unified (block and file)
 - Selection determines resource allocation on the appliance
 - PowerStore X model appliances do not have this option as they do not support NAS
- Must be decided during initial configuration
 - Select Unified if there is a chance that you will need file functionality
 - No option to convert between Block Optimized and Unified afterwards
- PowerStore Sizer will have performance details for each configuration
 - Block-optimized systems have slightly higher block IOPS potential
- If Unified is selected, NAS installation is performed automatically after cluster creation completes

NAS Server High Availability

- In the event of a PowerStore node failure, NAS Servers automatically failover from one NAS node to the other
 - Failover generally completes within 30 seconds to avoid host timeouts
 - NAS Servers are automatically moved to the peer node during NDU
 - Failback is a manual process
- New NAS Servers are automatically assigned round-robin across nodes
 - All file systems associated with the NAS Server are served by the NAS Server's current node
- Current Node
 - The node that the NAS server is currently running on
 - Changing this moves the NAS server to run on a different node
- Preferred Node
 - The node that the NAS server should be ideally running on
 - Acts as a marker that is based on the round-robin algorithm

Protection Policies

Protection Policies

Overview

- A Protection Policy is a set of user defined rules used to establish local or remote data protection across storage resources
 - Users do not configure snapshot schedules or replication sessions on a resource, but rather assign a Protection Policy to it
- A Protection Policy consists of rules which define what level of protection to apply
- When a Protection Policy is assigned to a resource:
 - The Snapshot Rule is automatically applied
 - Replication is automatically configured

Protection Policies

Overview - Example

- Snapshot Rules:
 - Hourly snapshots
 - Daily snapshots
 - Weekly snapshots
- Replication Rules:
 - Asynchronous Replication
 - I hour RPO

Snapshots

Overview

- Snapshots are crash-consistent point-in-time copies of data that are stored in supported storage resources
 - Snapshots are the local data protection solution within PowerStore
 - Note: A crash-consistent snapshot is not application consistent. Application consistency requires I/O to be quiesced at the host, host buffers flushed, and a snapshot taken.
- Snapshots are not full copies of the original data
 - Pointer based, redirect on write technology
 - You should not rely on snapshots for mirrors, disaster recovery, etc.
- Snapshots consume overall system storage capacity as changes to the source are made
 - Ensure that the system has enough capacity to accommodate snapshots

Overview (Continued)

- Snapshots are supported on volumes, volume groups, virtual machines, file systems, and thin clones
- Snapshots can be created:
 - Manually
 - Automatically via a user created Snapshot Rule within the system
 - To have snapshots automatically created via a predefined schedule on a storage resource, a Protection Policy containing a Snapshot Rule must be added to the storage resource
 - Automatically by a feature within the system
 - Such as replication
 - Hidden from the user

Snapshots

Redirect on Write Technology

Block Remote Replication

Use Cases - Remote Data Protection

- Redundancy
 - Increase data redundancy and fault tolerance levels
 - Failover to a secondary site
- Compliance
 - Require additional footprint.
 - for instance insurance companies, bank, and government sites
- Migration
 - Migrate data between storage systems
 - Tech Refresh

Replication Concepts

Supported Replication with PowerStore T / PowerStore X

- Supports PowerStore T model Arrays and PowerStore X model Arrays also mixed
- RPO based Asynchronous Remote Replication
 - The acceptable amount of data, measured in units of time, which may be lost due to a failure
 - With RPO the also frequency of synchronization between Source and Destination is defined
 - Factor of time, not amount of changed data
 - PowerStore supports fixed RPO values between 5min and 24hr
- Replication is supported for following Storage Resources
 - Volumes
 - Volume Groups
 - Thin Clones
- IP based only
- Policy based
- Leverage PowerStore Snapshot technology

Replication Topologies

Overview

Supported Replication Topologies with PowerStore platform

- One-to-One (1:1)
 - Uni Directional
 - One or multiple Volumes are replicated from one cluster to one other cluster
 - Bi-Directional
 - Various Volumes are replicated in different directions between two clusters
- One-to-many (1:n)
 - Different Volumes are replicating to multiple destination clusters
 - No Support for fan-out or cascaded/chain replication
- Many-to-One (n:1)
 - Individual Volumes from different cluster are replicating to a single cluster

Remote Replication

Diagram

D&LLTechnologies

